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The Harmonic Index for Unicyclic Graphs with Given Girth
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Abstract. The harmonic index of a graph G is defined as the sum of the weights 2
d(u)+d(v) of all edges uv of G,

where d(u) denotes the degree of a vertex u in G. In this work, we present the minimum, second-minimum,
maximum and second-maximum harmonic indices for unicyclic graphs with given girth, and characterize
the corresponding extremal graphs.

1. Introduction

Let G be a simple connected graph with vertex set V(G) and edge set E(G). The Randić index R(G),
proposed by Randić [18] in 1975, is defined as the sum of the weights 1√

d(u)d(v)
over all edges uv of G, that is,

R(G) =
∑

uv∈E(G)

1√
d(u)d(v)

,

where d(u) (or dG(u)) denotes the degree of a vertex u of G. The Randić index is one of the most success-
ful molecular descriptors in structure-property and structure-activity relationship studies. Mathematical
properties of this descriptor have been studied extensively (see [11, 15, 16] and the references cited therein).
Motivated by the success of the Randić index, various generalizations and modifications were introduced,
such as the generalized Randić index [1], the atom-bond connectivity index [5, 6], the sum-connectivity
index [19, 30] and the general sum-connectivity index [4, 31].

In this paper, we consider another closely related variant of the Randić index, named the harmonic
index. For a graph G, the harmonic index H(G) is defined as

H(G) =
∑

uv∈E(G)

2
d(u) + d(v)

.

This index first appeared in [7], and it can also be viewed as a particular case of the general sum-connectivity
index. Favaron, Mahéo and Saclé [8] considered the relation between the harmonic index and the eigen-
values of graphs. Zhong [26, 27], Zhong and Xu [29] determined the minimum and maximum harmonic
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indices for simple connected graphs, trees, unicyclic graphs and bicyclic graphs, and characterized the
corresponding extremal graphs. Wu, Tang and Deng [20] found the minimum harmonic index for graphs
(triangle-free graphs, respectively) with minimum degree at least 2, and characterized the corresponding
extremal graphs. The same authors [21] also considered the relation between the harmonic index and
the girth of a graph. Deng, Balachandran, Ayyaswamy and Venkatakrishnan [3] considered the relation
between the harmonic index and the chromatic number of a graph by using the effect of removal of a
minimum degree vertex on the harmonic index. Ilić [14], Xu [23], Zhong and Xu [28] established some
relationships between the harmonic index and several other topological indices. The chemical applicability
of the harmonic index was also recently investigated [10, 12]. See [2, 13, 24, 32] for more information of this
index.

In this work, we consider the minimum, second-minimum, maximum and second-maximum harmonic
indices for unicyclic graphs with n ≥ 5 vertices and girth k (3 ≤ k ≤ n), and characterize the corresponding
extremal graphs. We also present the second-minimum, second-maximum, third-maximum and fourth-
maximum harmonic indices for unicyclic graphs with n ≥ 5 vertices. The similar techniques have been
used to determine the extremal graphs with respect to some other topological indices for a certain classes
of graphs, which is one of the important directions in chemical graph theory. Liu, Zhu and Cai [17]
found the minimum Randić index for unicyclic graphs with given girth. Yu and Feng [25], Feng, Ilić
and Yu [9] determined the extremal graphs with the minimum, second-minimum, maximum and second-
maximum Wiener indices for unicyclic graphs with given girth. Xu and Das [22] considered the minimum
and maximum multiplicative sum Zagreb indices for trees, unicyclic graphs and bicyclic graphs, and
characterized the corresponding extremal graphs.

We conclude this section with some notation and terminology. Let G be a graph. For any vertex v ∈ V(G),
we use NG(v) (or N(v) if there is no ambiguity) to denote the set of neighbors of v in G, and G − v to denote
the graph resulting from G by deleting the vertex v and its incident edges. A pendent vertex is a vertex of
degree 1. An edge incident with a pendent vertex is called a pendent edge. We define G−uv to be the graph
obtained from G by deleting the edge uv ∈ E(G), and G + uv to be the graph obtained from G by adding an
edge uv between two non-adjacent vertices u and v of G. We write A := B to rename B as A.

Let Un be the set of unicyclic graphs with n ≥ 5 vertices, and let Un,k be the set of unicyclic graphs with
in ≥ 5 vertices and girth k, where 3 ≤ k ≤ n. Clearly, Un =

⋃n
k=3 Un,k. We use Cn and Un,n−1 to denote the

cycle with n vertices and the unique unicyclic graph with n vertices and girth n − 1, respectively. Since
Un,n = {Cn} and Un,n−1 = {Un,n−1}, we only consider 3 ≤ k ≤ n − 2 in the following arguments.

2. The Minimum and Second-Minimum Harmonic Indices for Graphs in Un,k

In this section, we present the minimum and second-minimum harmonic indices for graphs in Un,k, and
characterize the corresponding extremal graphs. The extremal graph with the second-minimum harmonic
index for graphs in Un is also obtained. We first prove the following two lemmas.

Lemma 2.1. Let G be a nontrivial connected graph, and let uv ∈ E(G) such that dG(u), dG(v) ≥ 2 and NG(u)∩NG(v) =
∅. Let G′ be the graph obtained from G by contracting the edge uv into a new vertex w and adding a new pendent
edge ww′ to w. Then H(G) > H(G′).

Proof. Let NG(u) = {v,u1, . . . ,up−1} (p ≥ 2) with dG(ui) = dG′ (ui) = pi for each 1 ≤ i ≤ p − 1, and let
NG(v) = {u, v1, . . . , vq−1} (q ≥ 2) with dG(v j) = dG′ (v j) = q j for each 1 ≤ j ≤ q − 1. Then NG′ (w) =
{u1, . . . ,up−1, v1, . . . , vq−1,w′}. Hence

H(G) −H(G′) =

 p−1∑
i=1

2
p + pi

+

q−1∑
j=1

2
q + q j

 −
 p−1∑

i=1

2
(p + q − 1) + pi

+

q−1∑
j=1

2
(p + q − 1) + q j


=

p−1∑
i=1

(
2

p + pi
−

2
(p + q − 1) + pi

)
+

q−1∑
j=1

(
2

q + q j
−

2
(p + q − 1) + q j

)
> 0.

This proves the lemma.
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Lemma 2.2. (i) For integer q ≥ 3, the function f (x) = 2
q+x −

2
q+x−1 is increasing for x ≥ 1.

(ii) The function 1(x) = 4
x+2 +

2(x−4)
x+1 −

2(x−3)
x is decreasing for x ≥ 3.

(iii) The function h(x) = 2
x+2 +

2(x−3)
x+1 −

2(x−3)
x is decreasing for x ≥ 3.

(iv) The function l(x) = 4
(x+2)2 −

8
(x+1)2 + 4

x2 > 0 for x ≥ 3.

Proof. (i) For x ≥ 1, we have

f ′(x) = −
2

(q + x)2 +
2

(q + x − 1)2 > 0,

and hence (i) holds.
(ii) Let 11(x) = 4

x+1 +
2(x−3)

x , then 1(x) = 11(x + 1) − 11(x). For x ≥ 3, we have

1′′1 (x) =
8

(x + 1)3 −
12
x3 =

−4(x3 + 9x2 + 9x + 3)
x3(x + 1)3 < 0,

and 1′(x) = 1′1(x + 1) − 1′1(x) < 0. This proves (ii).
(iii) Let h1(x) = 2

x+1 +
2(x−3)

x , then h(x) = h1(x + 1) − h1(x). For x ≥ 3, we see that

h′′1 (x) =
4

(x + 1)3 −
12
x3 =

−4(2x3 + 9x2 + 9x + 3)
x3(x + 1)3 < 0,

and h′(x) = h′1(x + 1) − h′1(x) < 0. So the assertion of (iii) holds.
(iv) For x ≥ 3, we have

l(x) =
4

(x + 2)2 −
8

(x + 1)2 +
4
x2 =

8(3x2 + 6x + 2)
x2(x + 1)2(x + 2)2 > 0,

which implies that (iv) holds.

Ck n− k

Ln,k (3 ≤ k ≤ n− 2) L∗
n,k (4 ≤ k ≤ n− 2)

Ck n− k − 1n− 4

L∗
n,3

C3

u u uv

v

Figure 1: The graphs Ln,k and L∗n,k (3 ≤ k ≤ n − 2).

For each 3 ≤ k ≤ n− 2, let Ln,k be the unicyclic graph with n vertices obtained by attaching n− k pendent
edges to one vertex u of Ck (see Figure 1).

Theorem 2.3. Let G ∈ Un,k. Then H(G) ≥ k−2
2 + 4

n−k+4 +
2(n−k)
n−k+3 with equality if and only if G � Ln,k.

Proof. We prove the theorem by induction on n. If n = k + 2, then it is easy to calculate that the assertion
of the theorem holds. So we may assume that n > k + 2 and the result holds for smaller values of n. For
convenience, we may also assume that G is the extremal graph with the minimum harmonic index for
graphs in Un,k.

Let w ∈ V(G) be a pendent vertex and let vw ∈ E(G). Then d(v) = q ≥ 2. Since G ∈ Un,k, we have
q ≤ n − k + 2. Let N(v) = {w, v1, . . . , vq−1} with d(vi) = qi for each 1 ≤ i ≤ q − 1. Note that there exists at least
one vertex in {v1, . . . , vq−1}with degree at least 2.
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Suppose there is exactly one vertex in {v1, . . . , vq−1} with degree at least 2, say u. Then by Lemma 2.1,
there exists a graph G′ ∈ Un,k such that H(G) > H(G′), contradicting the assumption that G has the minimum
harmonic index for graphs in Un,k.

So we may further assume that there are at least two vertices in {v1, . . . , vq−1}with degree at least 2 (and
hence q ≥ 3). Let G′′ := G − w, then G′′ ∈ Un−1,k. Now by applying Lemma 2.2(i), Lemma 2.2(ii) and the
induction hypothesis, we have

H(G) = H(G′′) +
2

q + 1
+

q−1∑
i=1

(
2

q + qi
−

2
(q − 1) + qi

)
≥ H(G′′) +

2
q + 1

+ 2
(

2
q + 2

−
2

q + 1

)
+ (q − 3)

(
2

q + 1
−

2
q

)
= H(G′′) +

(
4

q + 2
+

2(q − 4)
q + 1

−
2(q − 3)

q

)
≥

(
k − 2

2
+

4
(n − 1) − k + 4

+
2[(n − 1) − k]
(n − 1) + k + 3

)
+

(
4

q + 2
+

2(q − 4)
q + 1

−
2(q − 3)

q

)
≥

(
k − 2

2
+

4
n − k + 3

+
2(n − k − 1)

n − k + 2

)
+

(
4

(n − k + 2) + 2
+

2[(n − k + 2) − 4]
(n − k + 2) + 1

−
2[(n − k + 2) − 3]

n − k + 2

)
=

k − 2
2

+
4

n − k + 4
+

2(n − k)
n − k + 3

with equalities if and only if G′′ � Ln−1,k, d(v) = q = n − k + 2, exactly two vertices in {v1, . . . , vq−1} have
degree 2 and the other q − 3 vertices in {v1, . . . , vq−1} have degree 1, i.e., G � Ln,k. This completes the proof
of the theorem.

In order to determine the second-minimum harmonic index for graphs in Un,k, we need the following
auxiliary lemmas.

Lemma 2.4. Let H be a nontrivial connected graph, and let uv ∈ E(H) such that dH(u) = dH(v) = 2 and the other
neighbors of u and v have degree at least 2 in H. Let G be the graph obtained from H by attaching p − 2 and q − 2
pendent edges (p ≥ q ≥ 3) to u and v, respectively, and let G′ be the graph obtained from H by attaching p + q − 4
pendent edges to u. Then H(G) > H(G′).

Proof. Let NH(u) = {v,w}with dH(w) = s ≥ 2, and let NH(v) = {u,w′}with dH(w′) = t ≥ 2. Since p ≥ q ≥ 3, we
have

H(G) −H(G′)

=

(
2

p + s
+

2(p − 2)
p + 1

+
2(q − 2)

q + 1
+

2
q + t

)
−

(
2

(p + q − 2) + s
+

2(p − 2)
(p + q − 2) + 1

+
2(q − 2)

(p + q − 2) + 1
+

2
2 + t

)
=

(
2

p + s
−

2
p + q − 2 + s

)
+ (p − 2)

(
2

p + 1
−

2
p + q − 1

)
+ (q − 2)

(
2

q + 1
−

2
p + q − 1

)
+

(
2

q + t
−

2
2 + t

)
> (q − 2)

(
2

q + 1
−

2
p + q − 1

)
+

(
2

q + t
−

2
2 + t

)
= 2(q − 2)

(
p − 2

(q + 1)(p + q − 1)
−

1
(q + t)(2 + t)

)
≥ 2(q − 2)

(
p − 2

(q + 1)(p + q − 1)
−

1
4(q + 2)

)
.

If p = q = 3, then

H(G) −H(G′) > 2 · (3 − 2) ·
(

3 − 2
(3 + 1) · (3 + 3 − 1)

−
1

4 · (3 + 2)

)
= 0.
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So we may assume that p ≥ 4. Hence

H(G) −H(G′) > 2(q − 2)
(

p − 2
(q + 2)(p + p − 1)

−
1

4(q + 2)

)
=

2(q − 2)
q + 2

(
p − 2
2p − 1

−
1
4

)
=

2(q − 2)
q + 2

·
2p − 7

4(2p − 1)
> 0.

This proves Lemma 2.4.

Lemma 2.5. Let H be a nontrivial connected graph, and let uv ∈ E(H) such that dH(u) = dH(v) = 2 and the other
neighbors of u and v also have degree 2 in H. Let G be the graph obtained from H by attaching p− 2 and q− 2 pendent
edges (p ≥ q ≥ 3) to u and v, respectively, and let G′ be the graph obtained from H by attaching p − 1 and q − 3
pendent edges to u and v, respectively. Then H(G) > H(G′).

Proof. Let h(x) = 2
x+2 +

2(x−3)
x+1 −

2(x−3)
x . Then by Lemma 2.2(iii), h(x) is decreasing for x ≥ 3. Since p ≥ q ≥ 3,

we conclude that

H(G) −H(G′)

=

(
2

p + 2
+

2(p − 2)
p + 1

+
2(q − 2)

q + 1
+

2
q + 2

)
−

(
2

(p + 1) + 2
+

2(p − 1)
(p + 1) + 1

+
2(q − 3)

(q − 1) + 1
+

2
(q − 1) + 2

)
=

(
2

q + 2
+

2(q − 3)
q + 1

−
2(q − 3)

q

)
−

(
2

p + 3
+

2(p − 2)
p + 2

−
2(p − 2)

p + 1

)
= h(q) − h(p + 1) > 0.

So the assertion of the lemma holds.

Lemma 2.6. Let H be a nontrivial connected graph, and let u, v be two distinct vertices in H such that uv < E(H),
dH(u) = dH(v) = 2 and all neighbors of u and v also have degree 2 in H. Let G be the graph obtained from H by
attaching p − 2 and q − 2 pendent edges (p ≥ q ≥ 3) to u and v, respectively, and let G′ be the graph obtained from H
by attaching p − 1 and q − 3 pendent edges to u and v, respectively. Then H(G) > H(G′).

Proof. Let 1(x) = 4
x+2 +

2(x−4)
x+1 −

2(x−3)
x . Then by Lemma 2.2(ii), 1(x) is decreasing for x ≥ 3. Since p ≥ q ≥ 3, we

see that

H(G) −H(G′)

=

(
4

p + 2
+

2(p − 2)
p + 1

+
2(q − 2)

q + 1
+

4
q + 2

)
−

(
4

(p + 1) + 2
+

2(p − 1)
(p + 1) + 1

+
2(q − 3)

(q − 1) + 1
+

4
(q − 1) + 2

)
=

(
4

q + 2
+

2(q − 4)
q + 1

−
2(q − 3)

q

)
−

(
4

p + 3
+

2(p − 3)
p + 2

−
2(p − 2)

p + 1

)
= 1(q) − 1(p + 1) > 0.

This proves the lemma.

For each 3 ≤ k ≤ n − 2, let L1
n,k be the set of unicyclic graphs with n vertices obtained by attaching p and

q pendent edges (p ≥ q ≥ 1 and p + q = n − k) to two distinct vertices u, v of Ck, respectively, and let L2
n,k be

the set of unicyclic graphs with n vertices obtained by attaching q pendent edges (1 ≤ q ≤ n − k − 1) to a
pendent vertex v of Ln−q,k (see Figure 2 for an illustration).

Lemma 2.7. Let G ∈ L1
n,k.
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Ck

q

L2
n,kL1

n,k

Ck
p

uu
q

v

n− k − 1− q

v

Figure 2: The graph sets L1
n,k and L2

n,k (3 ≤ k ≤ n − 2).

(i) If k = 3, then H(G) ≥ 2
n+1 + 2

n +
2(n−4)

n−1 + 9
10 with equality if and only if q = 1.

(ii) If 4 ≤ k ≤ n − 2, then H(G) ≥ k−3
2 + 4

n−k+3 +
2(n−k−1)

n−k+2 + 4
5 with equality if and only if uv < E(G) and q = 1.

Proof. First suppose that k = 3. Then uv ∈ E(G). By applying Lemma 2.5, we have H(G) ≥ 2
n+1 + 2

n +
2(n−4)

n−1 + 9
10

with equality if and only if p = n − 4 and q = 1. This proves (i).
Now assume that 4 ≤ k ≤ n − 2. If uv ∈ E(G), then by Lemma 2.5, we conclude that H(G) ≥ k−2

2 + 2
n−k+4 +

2
n−k+3 +

2(n−k−1)
n−k+2 + 2

5 with equality if and only if p = n − k − 1 and q = 1. If uv < E(G), then by Lemma 2.6, we
have H(G) ≥ k−3

2 + 4
n−k+3 +

2(n−k−1)
n−k+2 + 4

5 with equality if and only if p = n − k − 1 and q = 1. Since(
k − 2

2
+

2
n − k + 4

+
2

n − k + 3
+

2(n − k − 1)
n − k + 2

+
2
5

)
−

(
k − 3

2
+

4
n − k + 3

+
2(n − k − 1)

n − k + 2
+

4
5

)
=

( 2
n − k + 4

−
2

n − k + 3

)
+

1
10

= −
2

(n − k + 3)(n − k + 4)
+

1
10

≥ −
2

(2 + 3) · (2 + 4)
+

1
10
> 0,

we see that (ii) holds. This finishes the proof of the lemma.

Lemma 2.8. Let G ∈ L2
n,k. Then H(G) ≥ k−2

2 + 6
n−k+3 +

2(n−k−2)
n−k+2 + 2

3 with equality if and only if q = 1.

Proof. It is easy to see that the assertion of the lemma holds for n− k = 2 (since there is only one such graph
in L2

n,k). So we may assume that n − k ≥ 3. Let

f (q) = H(G) =
k − 2

2
+

2
n − k + 3

+
4

n − k + 4 − q
+

2(n − k − 1 − q)
n − k + 3 − q

+
2q

q + 2

with 1 ≤ q ≤ n − k − 1. Hence

f ′(q) =
4

(n − k + 4 − q)2 −
8

(n − k + 3 − q)2 +
4

(q + 2)2 .

If 1 ≤ q ≤ b n−k
2 c (i.e., q + 2 ≤ n − k + 2 − q), then by Lemma 2.2(iv) (with x = n − k + 2 − q ≥ 3), we have

f ′(q) =

(
4

(n − k + 4 − q)2 −
8

(n − k + 3 − q)2 +
4

(n − k + 2 − q)2

)
+

(
4

(q + 2)2 −
4

(n − k + 2 − q)2

)
≥

4
(n − k + 4 − q)2 −

8
(n − k + 3 − q)2 +

4
(n − k + 2 − q)2

=
4

(x + 2)2 −
8

(x + 1)2 +
4
x2 > 0.
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If d n−k+1
2 e ≤ q ≤ n − k − 1 (i.e., q + 2 ≥ n − k + 3 − q), we know that

f ′(q) =

(
4

(n − k + 4 − q)2 −
4

(n − k + 3 − q)2

)
+

(
4

(q + 2)2 −
4

(n − k + 3 − q)2

)
< 0.

This implies that f (q) is increasing for 1 ≤ q ≤ b n−k
2 c and decreasing for d n−k+1

2 e ≤ q ≤ n − k − 1. Therefore
the minimum value of f (q) is min{ f (1), f (n − k − 1)}. Since n − k ≥ 3, we have

f (n − k − 1) − f (1) =

(
k − 2

2
+

2
n − k + 3

+
2(n − k − 1)

n − k + 1
+

4
5

)
−

(
k − 2

2
+

6
n − k + 3

+
2(n − k − 2)

n − k + 2
+

2
3

)
=

(
−

4
n − k + 3

−
2(n − k − 2)

n − k + 2
+

2(n − k − 1)
n − k + 1

)
+

2
15

=
(
−

4
n − k + 3

+
8

n − k + 2
−

4
n − k + 1

)
+

2
15

= −
8

(n − k + 1)(n − k + 2)(n − k + 3)
+

2
15

≥ −
8

(3 + 1) · (3 + 2) · (3 + 3)
+

2
15
> 0.

So the assertion of Lemma 2.8 holds.

Let L∗n,3 be the unicyclic graph with n vertices obtained by attaching n− 4 and one pendent edges to two
adjacent vertices u, v of a triangle, respectively. For each 4 ≤ k ≤ n − 2, let L∗n,k be the set of unicyclic graphs
with n vertices obtained by attaching n − k − 1 and one pendent edges to two non-adjacent vertices u, v of
Ck, respectively (see Figure 1). Note that L∗n,k ⊆ L1

n,k and there are b k
2 c − 1 unicyclic graphs in L∗n,k for each

4 ≤ k ≤ n − 2. We can now determine the second-minimum harmonic index for graphs in Un,k.

Theorem 2.9. Let G ∈ Un,k and G � Ln,k.

(i) If k = 3, then H(G) ≥ 2
n+1 + 2

n +
2(n−4)

n−1 + 9
10 with equality if and only if G � L∗n,3.

(ii) If 4 ≤ k ≤ n − 2, then H(G) ≥ k−3
2 + 4

n−k+3 +
2(n−k−1)

n−k+2 + 4
5 with equality if and only if G ∈ L∗n,k.

Proof. Let C := v1v2 . . . vkv1 be the unique cycle in G. Then there exists at least one vertex in {v1, v2, . . . , vk}

with degree at least 3. For convenience of the proof, let A := 2
n+1 + 2

n +
2(n−4)

n−1 + 9
10 (if k = 3) or A :=

k−3
2 + 4

n−k+3 +
2(n−k−1)

n−k+2 + 4
5 (if 4 ≤ k ≤ n − 2), and let B := k−2

2 + 6
n−k+3 +

2(n−k−2)
n−k+2 + 2

3 .
Suppose there are at least three vertices in {v1, v2, . . . , vk} with degree at least 3. Then by applying

Lemma 2.1, Lemma 2.4 (or Lemma 2.6) and Lemma 2.7, there exists a graph G1 ∈ L1
n,k such that H(G) >

H(G1) ≥ A.
If there are exactly two vertices in {v1, v2, . . . , vk} with degree at least 3, then by Lemma 2.1, Lemma 2.5

(or Lemma 2.6) and Lemma 2.7, there exists a graph G2 ∈ L1
n,k such that H(G) ≥ H(G2) ≥ A with equalities if

and only if G � L∗n,k.
So we may assume that there is exactly one vertex in {v1, v2, . . . , vk} with degree at least 3. Since

G � Ln,k, we know that there exists at least one non-pendent vertex outside C. If there are at least two
non-pendent vertices outside C, then by Lemma 2.1 and Lemma 2.8, there exists a graph G3 ∈ L2

n,k such that
H(G) > H(G3) ≥ B. Hence we may further assume that there is only one non-pendent vertex outside C,
which implies that G ∈ L2

n,k. Then by Lemma 2.8, we have H(G) ≥ B with equality if and only if q = 1.
To prove the theorem, it suffices to compare the two values A and B. If k = 3, then
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B − A =

(
3 − 2

2
+

6
n − 3 + 3

+
2(n − 3 − 2)

n − 3 + 2
+

2
3

)
−

(
2

n + 1
+

2
n

+
2(n − 4)

n − 1
+

9
10

)
=

(
−

2
n + 1

+
4
n
−

2
n − 1

)
+

4
15

= −
4

n(n − 1)(n + 1)
+

4
15

≥ −
4

5 · (5 − 1) · (5 + 1)
+

4
15
> 0.

So (i) holds. If 4 ≤ k ≤ n − 2, then

B − A =

(
k − 2

2
+

6
n − k + 3

+
2(n − k − 2)

n − k + 2
+

2
3

)
−

(
k − 3

2
+

4
n − k + 3

+
2(n − k − 1)

n − k + 2
+

4
5

)
=

( 2
n − k + 3

−
2

n − k + 2

)
+

11
30

= −
2

(n − k + 2)(n − k + 3)
+

11
30

≥ −
2

(2 + 2) · (2 + 3)
+

11
30
> 0.

This proves (ii), and hence completes the proof of the theorem.

By applying Theorem 2.3 and Theorem 2.9, we have the following result.

Corollary 2.10. Let Ln,k and L∗n,k be the graphs defined as above.

(i) If n = 5, then

H(L5,3) < H(L∗5,3) < H(U5,4) < H(C5).

(ii) If n ≥ 6, then

H(Ln,3) < H(L∗n,3) < H(Ln,4) < H(L∗n,4) < · · · < H(Ln,n−2) < H(L∗n,n−2) < H(Un,n−1) < H(Cn).

Proof. Since H(L∗5,3) = 32
15 < H(U5,4) = 23

10 < H(C5) = 5
2 , we know that (i) holds.

We now prove (ii). By Theorem 2.3 and Theorem 2.9, we have H(Ln,k) < H(L∗n,k) for each 3 ≤ k ≤ n − 2.
Since H(L∗n,n−2) = n

2 −
2
5 < H(Un,n−1) = n

2 −
1
5 < H(Cn) = n

2 , in order to prove (ii), it suffices to show that
H(L∗n,k) < H(Ln,k+1) for each 3 ≤ k ≤ n − 3. If k = 3, then we have

H(L∗n,3) −H(Ln,4) =

(
2

n + 1
+

2
n

+
2(n − 4)

n − 1
+

9
10

)
−

(
4 − 2

2
+

4
n − 4 + 4

+
2(n − 4)
n − 4 + 3

)
=

( 2
n + 1

−
2
n

)
−

1
10
< 0.

This implies that H(L∗n,3) < H(Ln,4). For each 4 ≤ k ≤ n − 3 (and hence n ≥ 7), we have

H(L∗n,k) −H(Ln,k+1)

=

(
k − 3

2
+

4
n − k + 3

+
2(n − k − 1)

n − k + 2
+

4
5

)
−

(
(k + 1) − 2

2
+

4
n − (k + 1) + 4

+
2[n − (k + 1)]
n − (k + 1) + 3

)
= −

1
5
< 0.
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So the assertion of the corollary holds.

It was shown in [27] that Ln,3 is the unique graph with the minimum harmonic index for graphs in
Un. By Theorem 2.3, Theorem 2.9 and Corollary 2.10, we conclude that L∗n,3 is the unique graph with the
second-minimum harmonic index for graphs in Un.

3. The Maximum and Second-Maximum Harmonic Indices for Graphs in Un,k

In this section, we consider the maximum and second-maximum harmonic indices for graphs in Un,k,
and characterize the corresponding extremal graphs. The extremal graphs with the second-maximum,
third-maximum and fourth-maximum harmonic indices for graphs in Un are also determined. First, we
prove the following two lemmas.

Lemma 3.1. Let H be a nontrivial connected graph with u ∈ V(H). Let G be the graph obtained from H by attaching
two paths P := uu1 . . . us and Q := uv1 . . . vt (s ≥ t ≥ 1) at u, and let G′ := G − uv1 + usv1. Then H(G) < H(G′).

Proof. Let dG(u) = p ≥ 3, and let NH(u) = NG(u) \ {u1, v1} = {w1, . . . ,wp−2} with dH(wi) = dG(wi) = pi for each
1 ≤ i ≤ p − 2. We consider three cases according to the values of s and t.

Case 1. s = t = 1.
In this case, dG(u1) = dG(v1) = 1. Then

H(G) −H(G′) =

 p−2∑
i=1

2
p + pi

+
4

p + 1

 −
 p−2∑

i=1

2
(p − 1) + pi

+
2

(p − 1) + 2
+

2
3


=

p−2∑
i=1

(
2

p + pi
−

2
(p − 1) + pi

)
+

2
p + 1

−
2
3

<
2

p + 1
−

2
3
≤

2
3 + 1

−
2
3
< 0.

Case 2. s > t = 1.
In this case, dG(u1) = 2 and dG(v1) = 1. Hence we have

H(G) −H(G′) =

 p−2∑
i=1

2
p + pi

+
2

p + 2
+

2
p + 1

+
2
3

 −
 p−2∑

i=1

2
(p − 1) + pi

+
2

(p − 1) + 2
+

1
2

+
2
3


=

p−2∑
i=1

(
2

p + pi
−

2
(p − 1) + pi

)
+

2
p + 2

−
1
2

<
2

p + 2
−

1
2
≤

2
3 + 2

−
1
2
< 0.

Case 3. s ≥ t > 1.
Now dG(u1) = dG(v1) = 2. Therefore

H(G) −H(G′) =

 p−2∑
i=1

2
p + pi

+
4

p + 2
+

2
3

 −
 p−2∑

i=1

2
(p − 1) + pi

+
2

(p − 1) + 2
+ 1


=

p−2∑
i=1

(
2

p + pi
−

2
(p − 1) + pi

)
+

4
p + 2

−
2

p + 1
−

1
3

<
4

p + 2
−

2
p + 1

−
1
3

= −
(p − 1)(p − 2)

3(p + 1)(p + 2)
< 0.

So the assertion of the lemma holds.
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Lemma 3.2. Let H be a nontrivial connected graph, and let u, v be two distinct vertices in H with dH(u), dH(v) ≥ 2.
Moreover, suppose that the two neighbors of v have degree sum at most 9 in H if dH(v) = 2. Let G be the graph
obtained from H by attaching the paths P := uu1 . . . us and Q := vv1 . . . vt (s ≥ t ≥ 1) at u and v, respectively, and let
G′ := G − vv1 + usv1. Then H(G) < H(G′).

Proof. Since NG(u) = NH(u) ∪ {u1}, NG(v) = NH(v) ∪ {v1} and dH(u), dH(v) ≥ 2, we have dG(u) = p ≥ 3 and
dG(v) = q ≥ 3. Let NH(v) = NG(v) \ {v1} = {w1, . . . ,wq−1} with dG(wi) = qi for each 1 ≤ i ≤ q − 1. If uv ∈ E(G),
we further assume that w1 = u. Similar to Lemma 3.1, we consider three cases according to the values of s
and t.

Case 1. s = t = 1.
Since dG(u1) = dG(v1) = 1, we have

H(G) −H(G′) =

 q−1∑
i=1

2
q + qi

+
2

q + 1
+

2
p + 1

 −
 q−1∑

i=1

2
(q − 1) + qi

+
2

p + 2
+

2
3


=

q−1∑
i=1

(
2

q + qi
−

2
(q − 1) + qi

)
+

2
(p + 1)(p + 2)

+
2

q + 1
−

2
3

<
2

(p + 1)(p + 2)
+

2
q + 1

−
2
3

≤
2

(3 + 1) · (3 + 2)
+

2
3 + 1

−
2
3
< 0.

Case 2. s > t = 1.
Now dG(u1) = 2 and dG(v1) = 1. Hence

H(G) −H(G′) =

 q−1∑
i=1

2
q + qi

+
2

q + 1
+

2
3

 −
 q−1∑

i=1

2
(q − 1) + qi

+
1
2

+
2
3


=

q−1∑
i=1

(
2

q + qi
−

2
(q − 1) + qi

)
+

2
q + 1

−
1
2

<
2

q + 1
−

1
2
≤

2
3 + 1

−
1
2

= 0.

Case 3. s ≥ t > 1.
In this case, dG(u1) = dG(v1) = 2. Then

H(G) −H(G′) =

 q−1∑
i=1

2
q + qi

+
2

q + 2
+

2
3

 −
 q−1∑

i=1

2
(q − 1) + qi

+ 1


=

q−1∑
i=1

(
2

q + qi
−

2
(q − 1) + qi

)
+

2
q + 2

−
1
3

= −

q−1∑
i=1

2
(q + qi)(q − 1 + qi)

+
2

q + 2
−

1
3
.

If q ≥ 4, then

H(G) −H(G′) <
2

q + 2
−

1
3
≤

2
4 + 2

−
1
3

= 0.
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So we may assume that q = 3. Then by the assumption of the lemma, we have q1 + q2 ≤ 10 (since it is
possible that w1 = u and hence q1 = dG(u) = dH(u) + 1). Therefore

H(G) −H(G′) = −
2

(3 + q1)(2 + q1)
−

2
(3 + q2)(2 + q2)

+
2

3 + 2
−

1
3

≤ −
2

(3 + 5) · (2 + 5)
−

2
(3 + 5) · (2 + 5)

+
2
5
−

1
3
< 0.

This proves Lemma 3.2.

n− k

Un,k (3 ≤ k ≤ n− 2)

Ck

U∗
n,n−3

Cn−3

U∗
n,n−2

Cn−2
v vu

u u

Figure 3: The graphs Un,k (3 ≤ k ≤ n − 2), U∗n,n−3 and U∗n,n−2.

For each 3 ≤ k ≤ n − 2, let Un,k be the unicyclic graph with n vertices obtained by attaching a path of
length n − k to one vertex u of Ck (see Figure 3).

Theorem 3.3. Let G ∈ Un,k. Then H(G) ≤ n
2 −

2
15 with equality if and only if G � Un,k.

Proof. Let C := v1v2 . . . vkv1 be the unique cycle in G. Then there exists at least one vertex in {v1, v2, . . . , vk}

with degree at least 3.
Suppose there are at least two vertices in {v1, v2, . . . , vk} with degree at least 3. Then by Lemma 3.1 and

Lemma 3.2, we have H(G) < H(Un,k).
So we may assume that there is exactly one vertex in {v1, v2, . . . , vk} with degree at least 3, say vi. If

d(vi) ≥ 4, then by Lemma 3.1, we also have H(G) < H(Un,k). Hence we may further assume that d(vi) = 3.
Then by Lemma 3.1, we see that H(G) ≤ H(Un,k) with equality if and only if G � Un,k. It is easy to calculate
that H(Un,k) = n

2 −
2
15 . This finishes the proof of Theorem 3.3.

Ck Ck

u

u

v

Ck

u v

U1
n,k U2

n,k U3
n,k

s

t
t

s

t

s

Figure 4: The graph sets U1
n,k, U2

n,k (3 ≤ k ≤ n − 2) and U3
n,k (3 ≤ k ≤ n − 3).

For each 3 ≤ k ≤ n − 2, let U1
n,k be the set of unicyclic graphs with n vertices obtained by attaching two

paths of length s and t (s ≥ t ≥ 1 and s + t = n− k) to two distinct vertices u, v of Ck, respectively, and let U2
n,k

be the set of unicyclic graphs with n vertices obtained by attaching two paths of length s and t (s ≥ t ≥ 1
and s + t = n − k) to one vertex u of Ck. For each 3 ≤ k ≤ n − 3, let U3

n,k be the set of unicyclic graphs with n
vertices obtained by connecting a path of length t between a vertex u of Ck and a non-pendent vertex v of a
path of length s (s ≥ 2, t ≥ 1 and s + t = n − k). See Figure 4 for an illustration.
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Lemma 3.4. Let G ∈ U1
n,k

⋃
U2

n,k with 3 ≤ k ≤ n − 4. Then H(G) ≤ n
2 −

7
30 with equality if and only if G ∈ U1

n,k,
uv ∈ E(G) and s ≥ t > 1.

Proof. First suppose that G ∈ U1
n,k. If uv ∈ E(G), then

H(G) =

{
n
2 −

3
10 , if s > t = 1,

n
2 −

7
30 , if s ≥ t > 1.

If uv < E(G), then

H(G) =

{
n
2 −

1
3 , if s > t = 1,

n
2 −

4
15 , if s ≥ t > 1.

Now assume that G ∈ U2
n,k. Then

H(G) =

{
n
2 −

13
30 , if s > t = 1,

n
2 −

1
3 , if s ≥ t > 1.

Since n
2 −

13
30 <

n
2 −

1
3 <

n
2 −

3
10 <

n
2 −

4
15 <

n
2 −

7
30 , we see that the assertion of Lemma 3.4 holds.

Lemma 3.5. Let G ∈ U3
n,k with 3 ≤ k ≤ n − 4. Then H(G) ≤ n

2 −
7
30 with equality if and only if uv ∈ E(G) (i.e.,

t = 1) and v is not adjacent to any pendent vertex.

Proof. First assume that t = 1. Then s ≥ 3 and v is adjacent to at most one pendent vertex. Hence

H(G) =

{
n
2 −

3
10 , if v is adjacent to one pendent vertex,

n
2 −

7
30 , if v is not adjacent to any pendent vertex.

Now suppose that t > 1. Then

H(G) =


n
2 −

2
5 , if v is adjacent to two pendent vertices,

n
2 −

1
3 , if v is adjacent to one pendent vertex,

n
2 −

4
15 , if v is not adjacent to any pendent vertex.

Since n
2 −

2
5 <

n
2 −

1
3 <

n
2 −

3
10 <

n
2 −

4
15 <

n
2 −

7
30 , we see that the assertion of the lemma holds.

Ck Ck

u v

u

v

Figure 5: The two types of graphs in U∗n,k (3 ≤ k ≤ n − 4).

For each 3 ≤ k ≤ n− 4, let U∗n,k be the set of unicyclic graphs with n vertices obtained either by attaching
two paths of length at least 2 to two adjacent vertices u, v of Ck, respectively, or by connecting an edge
between a vertex u of Ck and a vertex v of a path of length n− k−1 such that v is not adjacent to any pendent
vertex (see Figure 5). Note that U∗n,k ⊆ U1

n,k

⋃
U3

n,k and H(U∗n,k) = n
2 −

7
30 . Let U∗n,n−3 be the unicyclic graph

with n vertices obtained by attaching a path of length 2 and a pendent edge to two adjacent vertices u, v of
Cn−3, respectively, and let U∗n,n−2 be the unicyclic graph with n vertices obtained by attaching two pendent
edges to two adjacent vertices u, v of Cn−2, respectively (see Figure 3). By the similar arguments as in the
proof of Thereom 3.3, we now determine the second-maximum harmonic index for graphs in Un,k.
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Theorem 3.6. Let G ∈ Un,k and G � Un,k.

(i) If 3 ≤ k ≤ n − 4, then H(G) ≤ n
2 −

7
30 with equality if and only if G ∈ U∗n,k.

(ii) If k = n − 3, then H(G) ≤ n
2 −

3
10 with equality if and only if G � U∗n,n−3.

(iii) If k = n − 2, then H(G) ≤ n
2 −

11
30 with equality if and only if G � U∗n,n−2.

Proof. Let C := v1v2 . . . vkv1 be the unique cycle in G. Then there exists at least one vertex in {v1, v2, . . . , vk}

with degree at least 3.
We first consider the case that 3 ≤ k ≤ n−4. Suppose there are at least three vertices in {v1, v2, . . . , vk}with

degree at least 3. Then by applying Lemma 3.1, Lemma 3.2 and Lemma 3.4, there exists a graph G1 ∈ U1
n,k

such that H(G) < H(G1) ≤ n
2 −

7
30 .

If there are exactly two vertices in {v1, v2, . . . , vk}with degree at least 3, then by Lemma 3.1 and Lemma 3.4,
there exists a graph G2 ∈ U1

n,k such that H(G) ≤ H(G2) ≤ n
2 −

7
30 with equalities if and only if G ∈ U1

n,k

⋂
U∗n,k.

So we may assume that there is exactly one vertex in {v1, v2, . . . , vk} with degree at least 3, say vi. If
d(vi) ≥ 5, then by Lemma 3.1 and Lemma 3.4, there exists a graph G3 ∈ U2

n,k such that H(G) < H(G3) < n
2 −

7
30 .

If d(vi) = 4, then by applying Lemma 3.1 and Lemma 3.4, there exists a graph G4 ∈ U2
n,k such that H(G) ≤

H(G4) < n
2 −

7
30 . Hence we may also assume that d(vi) = 3. Since G � Un,k, we see that there exists at least

one vertex with degree at least 3 outside C. If there are at least two vertices with degree at least 3 outside
C, then by Lemma 3.1 and Lemma 3.5, there must exist a graph G5 ∈ U3

n,k such that H(G) < H(G5) ≤ n
2 −

7
30 .

Therefore we may further assume that there is only one vertex with degree at least 3 outside C, which
implies that G ∈ U3

n,k. Then by Lemma 3.5, we have H(G) ≤ n
2 −

7
30 with equality if and only if G ∈ U∗n,k.

Since U∗n,k ⊆ U1
n,k

⋃
U3

n,k, we know that (i) holds.
For the cases that k = n− 3 or k = n− 2, by the similar arguments as above, it is easy to calculate that (ii)

and (iii) hold. This completes the proof of Theorem 3.6.

Since H(Un,n−1) = n
2 −

1
5 and H(Cn) = n

2 , by Theorem 3.3 and Theorem 3.6, we immediately obtain the
following result.

Corollary 3.7. Let Un,k and U∗n,k be the graphs defined as above.

(i) If n = 5, then

H(U∗5,3) < H(U5,4) < H(U5,3) < H(C5).

(ii) If n = 6, then

H(U∗6,4) < H(U∗6,3) < H(U6,5) < H(U6,3) = H(U6,4) < H(C6).

(iii) If n ≥ 7, then

H(U∗n,n−2) < H(U∗n,n−3) < H(U∗n,n−4) = · · · = H(U∗n,3)

< H(Un,n−1) < H(Un,3) = · · · = H(Un,n−2) < H(Cn).

It was proved in [27] that Cn is the unique graph with the maximum harmonic index for graphs in Un.
Now by Theorem 3.3, Theorem 3.6 and Corollary 3.7, we deduce that Un,k (3 ≤ k ≤ n − 2) are the unique
graphs with the second-maximum harmonic index, and Un,n−1 is the unique graph with the third-maximum
harmonic index for graphs in Un. Furthermore, U∗5,3 is the unique graph with the fourth-maximum harmonic
index for graphs in U5, U∗6,3 is the unique graph with the fourth-maximum harmonic index for graphs in
U6, and the graphs in U∗n,k (3 ≤ k ≤ n − 4) are the unique graphs with the fourth-maximum harmonic index
for graphs in Un if n ≥ 7.
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